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Abstract  

We show that for a wide and most natural class of (possibly infinite-dimensional) Grassmannian 
algebras of coefficients, the structure sheaf of every smooth DeWitt supermanifold is acyclic (i.e. its 
cohomology vanishes in positive degree). This result was previously known for finite-dimensional 
ground algebras and is new even for the original DeWitt algebra of supernumbers A~.  From here 
we deduce that (equivalence classes of) smooth DeWitt supermanifolds over a fixed ground algebra 
and of graded smooth manifolds are in a natural bijection with each other. However, contrary to what 
was stated previously by some authors, this correspondence fails to be functorial; so it happens, for 
instance, for Rogers' ground algebra B~c. Finally, we observe that every DeWitt super Lie group 
is a deformation of a graded Lie group over the spectrum Spec A of the ground algebra. © 1999 
Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

Supermanifold theory forms an interesting and fruitful chapter in the modern history 

of the relationship between geometry and physics, one characterized by a diversity of 

approaches to the core concepts of the theory and even by a certain amount of controversy. 
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This chapter hardly deserves to be closed without having properly examined and understood 
the precise relationship among the existing approaches to the concept of a supermanifold, 
and moreover unifying them on a solid basis. While the algebro-geometric approach to 
the concept of a supermanifold, combining sheaf-theoretic (locally ringed superspaces) 
and functorial (functor of points) methods is undoubtedly most profound and fundamental, 
the more intuitive models of Rogers and DeWitt cannot be merely thrown away and have 
to be merged into the mainstream picture. To mention just one example, the existence of 
infinite-dimensional Lie superalgebras that come from Rogers supergroups but not from 
supergroups in a more restrictive sense [43] backs our viewpoint. 

For a more detailed discussion of the various approaches to supermanifolds we refer the 

reader to the paper [9]. 
The present paper aims to contribute to a deeper understanding of the exact relationship 

between Berezin-Leites-Kostant supermanifolds (graded manifolds) and DeWitt super- 
manifolds over various choices of ground algebras of 'supernumbers'. Our main results 
demonstrate that isomorphism classes of DeWitt supermanifolds and those of graded man- 
ifolds are in a one-to-one correspondence in the sense that to a given DeWitt supermanifold 
M with structure sheaf G one can associate a graded manifold (MB, ~0) (where MB is the 
body of M), and vice versa, given a graded manifold (X, .4), one can construct a DeWitt 

supermanifold (M, G) with (MB, ~0) ~ (X, ,,4). The correspondence (M, ~) w-~ (MB, ~0) 
is always functorial, while the inverse correspondence is only so under special restrictions 
on the class of ground algebras, excluding, for example, Rogers's ground algebra Boo. (This 
fact was overlooked by Leites in [35].) We draw some conclusions for supergroups and state 
a conjecture: can every supergroup (graded Lie group) be deformed to an 'unconventional' 

DeWitt super Lie group? 
In the beginning of the article we survey the main properties of topological graded- 

commutative algebras serving as 'algebras of supernumbers' (Section 2). Here we single 
out the class of complete locally multiplicatively convex graded-commutative algebras of 
Grassmann origin (as we call them, AMGO algebras) as the most natural class allowing for 
a substantial theory to be developed and at the same time general enough to include all the 
previously known examples of such algebras. Then we proceed to the important concept 
of a G °° superfunction and Z-expansion and their relationship with the classical notion 
of Pringsheim regularity (Section 3). Some of our results are new, e.g. the description of 

those 'algebras of supemumbers' for which the Z-expansion converges for every smooth 
function: we isolate a rather simple and easily verified necessary and sufficient condition 
for an AMGO algebra to admit this property. In particular, the latter is shared by the DeWitt 
superuumber algebra AM. In Section 4 we survey an axiomatic approach to supermanifolds 
in the form previously developed elsewhere by a group of researchers including (at different 
stages) both of the present authors, and further readjust it to our, somewhat more general, 
setting. Section 5, which is central to this paper, states the acyclicity of the structure sheaf 
for smooth DeWitt supermanifolds over an arbitrary AMGO algebra; this result is deduced 
from the existence of supersmooth partitions of unity on an arbitrary DeWitt supermanifold, 
which result is also new. The correspondence between DeWitt supermanifolds and graded 
manifolds is discussed in Section 6. Finally, Section 7 contains applications to supergroups. 



U. Bruzzo, V. Pestov/Journal of Geometry and Physics 30 (1999) 147-168 

2. Ground algebras 
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The letter ~ will always denote a basic field, i.e., a fixed field with valuation, com- 
plete with respect to the associated metric. While the two cases of  importance are those 

where • = E or C, much of the theory makes sense in a more general setting. Let 
a unital graded-commutative K-algebra A be equipped with a Hausdorff topology, ~. 

(By 'graded'  we always mean '7]2-graded'.) We refer to the pair (A, ~)  as a topologi- 
cal graded-commutative algebra if it forms a topological vector space, the multiplication 
is continuous, and both the odd and the even sector, Ai,  i = 0, 1, are closed. If ~ is 
locally convex, then we call A = (A, ~)  a locally convex graded-commutative algebra. 
We say that A is an Arens-Michael graded-commutative algebra if in addition A is an 
Arens-Michael  topological algebra in the sense of  [30], i.e., A is complete (as a locally 

convex space) and locally m-convex [1,38]. The latter means that the topology is deter- 
mined by the collection of all continuous submultiplicative prenorms. (A prenorm p on 
an algebra A is called submultiplicative if p(xy) < p(x)p(y)  for all x, y • A.) Equiva- 

lently, a topological algebra is locally m-convex if a neighbourhood basis at zero is tormed 

by convex circled open multiplicative semigroups (discs). Consequently, Arens-Michael  

algebras are exactly those topological algebras represented as projective limits of  Banach 
algebras. 

We say that an Arens-Michael  graded-commutative algebra A is an Arens-Michael al- 
gebra of Grassmann origin, or simply an AMGO algebra, if it is topologically generated 

by the set A l U { 1 }, i.e., the values of K-polynomial  functions at odd elements are every- 
where dense in A. This definition extends our previous definition of Banach algebras of  

Grassmann origin or BGO algebras, introduced elsewhere [8,9], and is motivated by our 
wish to see in the class of  ground algebras under consideration DeWitt 's 'algebra of  super- 

numbers ' ,  A s  [22-24,37,40], which is non-Banach. The following description is obtained 

by a straightforward application of the known results about Arens-Michael algebras (cf. 
[1,30,38]). 

Proposition 2.1. AMGO algebras are exactly those unital graded-commutative locally 
convex algebras obtained as projective limits of families of Banach algebras of Grassmann 
origin. In other words, a unital graded-commutative locally convex algebra A is AMGO if 
and only if there exists an inverse system (Ba, urn, A) of BGO algebras B~, ot • A and 
continuous graded unital algebra homomorphisms ur~ : Bp ---> B~, r, et • A, such that 

l ira 
A = ~---cecA Bcr. 

The class of  AMGO algebras is probably the most natural class of ground algebras for 
superanalysis allowing for a substantial theory to be developed. All concrete examples of  
topological graded-commutative algebras known to us and so far used as 'supernumber 
algebras' are such. The following list is probably not comprehensive. 

1. Finite-dimensional Grassmann algebras [ 12]. More generally, every finite-dimensional 
local graded-commutative algebra is AMGO; some examples of such algebras other than 
Grassmann ones can be found in [31,52]. 
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2. Rogers' Banach-Grassmann algebra B~,  the Banach algebra completion of the Grassmann 
algebra A ( ~ )  with countably infinitely many anticommuting generators equipped with 
the ll-type norm [29,46]. 

3. The previous construction is a particular case of the free unital graded-commutative 
Banach algebra on a normed space, ~(E) ,  introduced in [41]. Namely, B~ = ~(11 ). 

4. All the algebras mentioned in cases 2 and 3 form examples of Banach-Grassmann 
algebras [29], and some of them are Grassmann-Banach algebras [28]. All Banach- 
Grassmann and all Grassmann-Banach algebras are BGO algebras. 

lim 
5. DeWitt's ground algebra, A ~  [16,18-20,22-24], is the projective limit * - - n ~  A (n) 

of finite-dimensional Grassmann algebras (for an explicit description of its topology see 
[37]). It is a Fr6chet AMGO algebra which is non-Banach, and being historically the first 
example of an infinite-dimensional ground algebra (and probably the most convenient 
one), it fully justifies pushing our setting towards its present limits. 

6. The infinite-dimensional Grassmann algebra A(~ ) ,  equipped with the finest locally 
convex topology, is also an AMGO algebra. It was studied in [32,47]. 

7. The algebras in cases 6 and 7 are particular examples of varietal free unital graded- 
commutative Arens-Michael algebras [40]. All such algebras have the AMGO 
property. 

Denote by JA the closed ideal of an AMGO algebra A generated by the odd sector. It 
is easily verified to form the (unique) maximal graded ideal in A, since it consists of all 
non-invertible elements. Thus, every AMGO algebra is a local graded-commutative algebra 
in the sense of [36]. The factor-algebra A / J  is naturally isomorphic to the basic field ~, 
and the augmentation homomorphism flA : A --+ ~ is usually called the body map. The 

complementary mapping t rA= IdA - flA is known as the soul map. Each element x e A 
uniquely decomposes into its body part and soul part, x = ~ a  (x)  -+- tra (X) -~ X B + XS, 

where xB ~ ~ and xs ~ JA. 

Definition 2.2. The annihilator of a unital graded-commutative algebra A is the subset 
A ± = { x ~ A  : Y y E A 1 ,  x y = O } .  

Every finite-dimensional graded-commutative algebra (in particular, every finite- 
dimensional Grassmann algebra) has a non-trivial annihilator. The algebras B~,  A~ ,  
m(~) ,  as well as free graded-commutative Banach algebras over infinite-dimensional 
purely odd B anach spaces and free graded-comutative Arens-Michael algebras over infinite- 
dimensional purely odd locally convex spaces all have trivial annihilators. For more on this, 
see [31,39-41]. 

The proof of the following statement is easy and will be omitted. The projective tensor 
product is that of locally convex spaces [27]. 

Proposition 2.3. The completed projective tensor product, A ~ r  F, of two arbitrary AM GO 
algebras, A and F, formed over the basic field •, is again an AMGO algebra. The anni- 

hilator of  the algebra A~rr F is trivial i f  and only if  the annihilators of  both A and F are 
trivial. 
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3. G ~ functions and Z-expansion 

15l 

Let A be a unital graded-commutative ~-algebra. A graded A-module M is free if it is 

isomorphic to one of  the form A ® V, where V is a graded ~-vector space. We will be only 

considering free modules of  finite rank, i.e., those of  the form A rnln = A ® ~,nl,,, where 

m, n E ~ and ~ml,, is the standard graded vector space of  dimension m In. It is not difficult 

to prove that the rank m ]n of a free module is invariant under the choice of its tensor product 

representation. For more on free modules, see [36, Ch. 3]. 
The body map t~ mln : A mrn ~ ]~mln is obtained by tensoring flA with Id~,,,i,,. 

A linearsuperspace A m`" of dimension (m, n) is the even part of a free A-module of rank 

m ln. In particular, it carries a natural structure of A0-module. The corresponding body map 
tim.,, . Am,,, __+ ~,,, is the restriction of  tirol,, to Am''' = (Amln)o. The product topology 

on Am' '  ~- (Ao) m x (A l) '~ is sometimes called the Rogerg, orfine, topology. The DeWitt 

(or coarse) topology on A ' ' n  is the weakest topology making tim'" continuous, where the 

topology on ~'"  is of  course the usual product topology induced by the valuation on ~. If 

one denotes ,~ = (f l , , , , ) - I  (A) for a subset A _ ~m, then DeWitt open subsets of  Am''' are 

exactly those subsets of  the form ,4 that are open in the fine topology. 

A mapping Am''' ~ A p'q is called superlinear if it can be represented in an obvious 

way by means of a graded (m + n) x (p + q)-matrix with entries from A0 U A i. (For more 

on this, see [22-24,28,31,46,50,52].) 

Let U ~ A m'n be DeWitt open. A mapping f : U ~ A l''q is superdifferentiable at a 

point x c U if it is Gfiteaux differentiable as a mapping between locally convex spaces and 

the differential Dx f is superlinear. In the case of purely even dimension (n = 0), the partial 

derivatives are uniquely defined as the entries of  the corresponding matrix representing the 

differential. This observation enables one to talk of  higher derivatives. In a particular case of 

a mapping f : U --+ A, where U c_ Am,° is DeWitt open, one calls f a G~Csuperfunction if 

it has supersmooth derivatives of all orders. More generally, this concept of G~-mappings  

makes sense for APlq-valued mappings. 

A great deal of  trouble [ 15,31,46,52] was caused in the past by the fact that this construc- 

tion in general does not work properly for mappings between superspaces whose dimension 

is not purely even, unless the ground algebra satisfies some special restrictions; see ]5,48,49] 

for a discussion. 

Since every G vc superfunction f : U --+ A, where U _ A ' ' ' °  is DeWitt open, is infinitely 

smooth as a mapping between (open subsets of) locally convex spaces, the techniques of 

global analysis become applicable. In particular, the restriction, f . ,  of  f to U. = U N ~ '" ,  

which is an open subspace of  ~m, is a (Gfiteaux) C ~c mapping f .  : U. ~ A ''''°. (If 

A is Banach, then of  course every G~teaux C °c mapping is also Frtchet C ~ ,  and since 
Arens-Michael algebras are projective limits of Banach algebras, we are always able to 

reduce the situation to the Frtchet differentiability setting.) In general, this restriction is 

not a generic C~C-mapping from a finite-dimensional space to A p'° treated as a locally 

convex space, and the restrictions stemming from f being G ~ can be quite substantial. If  

we denote by C. (U, A) the algebra of all mappings of the form f .  -- f l u  : U. ~ A,  where 
f 6 G°C (/_), A), then C.(U,  A)  c_ C ~ ( U ,  A) ,  but this inclusion is often proper [28,40]. 
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We will now extend several results, previously established for Banach algebras of  

Grassmann origin [8], to our more general framework of  Arens-Michael algebras of 

Grassmann origin. 

L e m m a  3.1. The mapping f ~ f ,  is injective. In other words, if f : U --+ A is a G ~ 

function, then the condition f l u  =- 0 implies f =- O. 

Proof. Let f :/.) --+ A be an arbitrary G ~ function. The algebra A contains an everywhere 

dense nilpotent subalgebra, A (a graded unital subalgebra of  A algebraically generated by 

A 1). Therefore, the Taylor series of f is terminating at every point of  the form x + c~, where 

x e U, o t e  A, after k terms, where k = k(a) is the class of nilpotency of u. Since k 

remains the same for all scalar multiples ta, t E V~, the restriction of  f to the affine line 

x + ta,  t e ~ is k-polynomial in t, with all the derivatives of  the order > k vanishing for 

all values of  t, and in particular the sum of the terminating Taylor series of  f at every point 

of  the form x + a equals f ( x  + a). 
Now assume that f l u  =- O. By the above, f ( x  + or) = 0 for each x e U and a e A. But 

the points of  the form x + ot are everywhere dense in U, whence f = 0 as required. [] 

Corol lary  3.2. The restriction mapping f ~-~ f ,  establishes an isomorphism between the 

graded A-algebras G~(U,  A) and C,(U, A). 

Our next goal is twofold: to invert the restriction mapping f ~ f .  and to obtain some 

idea of  the 'size'  of  C. (U, A) as a subalgebra of  C ~ (U, A). 

The Z-expansion of a C~-mapping  f : U --+ A (also called Grassmann analytic 

continuation or soul expansion), where U c ~m, is a mapping Z ( f )  • (J ~ A (provided 

it exists), defined by 

cx~ 

Z(h)(x)  = E ~.o(J)h#m'°(x) (sm'O(x)) 

j=0 

for h ~ C,(U, A) and all x e U [12,23,29,46]. Notice that the j th  differential D(J)ham.O(x) 
of h at the point flrn'O(x) acts on A m'° x . . .  x Am'O (j times) by extending by A0- 

linearity its action on K m x .. • x N[ m. Alternatively, the Z-expansion can be rewritten as 

follows: 

1 /ObJIh~ 
Z(h)(x).~- E '~. ~xJ  ]am.O(x, (Sm'O(X))J' 

IJl=0 

where J is a multi-index. 

The behaviour of  Z-expansion is described by the following two important theorems. 

Theorem 3.3. Let A be an AMGO algebra, let m be a positive integer and U be an 
open subset of ~m. For an arbitrary G °° function f on U, the Z-expansion of the 
restriction f .  of f to U converges to f .  The convergence is uniform on compacta 
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lying in any 'soul fibre' {x}'~ with x ~ U. For any i = 1 . . . . .  m the following holds." 

Of/Ox i = Z(Of , /Oxi ) .  

Proof.  For BGO algebras the result was established in [8]. Now consider the case of  a 
general AMGO algebra, A. Let p be an arbitrary submultiplicative continuous prenorm on 

A. Denote by A'p the BGO algebra associated to p, i.e., the completion of the factor algebra 

of  A by the ideal {x ~ A : p(x )  = 0] normed in an obvious way, and by rrp • A ~ A'I, 
the continuous factor homomorphism. According to the above mentioned result for BGO 

algebras, the Z-expansion of rrp o f l u  converges to some G ~ function fp • U ~ AI, 

uniformly on compacta lying in the soul fibres of U, where (J is the cylinder in (~'p)m.0 over 

U. It is easy to see that the G ~ functions fp,  as p runs over all submultiplicative continuous 

prenorms on A, commute with the natural continuous graded algebra homomorphisrns 
,4p ~ AAq, whenever p > q. Consequently, there exists a unique continuous mapping 

fo " U --+ A such that 7rp o fo = fp for every p, where U is formed in the superspace 

Am,O ~ l im  p(Xp)m,O" Furthermore, f .  is easily checked to be G ~ and to satisfy f . [ u  = 

f4u .  Lemma 3.1 implies that fo = f .  In the same way one obtains the statement about the 

derivatives. [] 

Coro l la ry  3.4. The Z-expansion establishes an isomorphism o f  graded A-algebras 

Z " C,(U, A) ~ C ~ ( U ,  A), 

which is the two-sided inverse to the restriction mapping f ~ f , .  

Corol la ry  3.5. Let x ,  y ~ (J belong to the same soul fibre, i.e., ~ (x )  = fl(y). Then for  

every G ~ function f : U ~ A p'q the elements f ( x )  and f ( y )  belong to the same soul 

fibre. 

Proof. It is enough to prove the fact for p = q = 1, in which case it follows from comparing 

the values of  Z-expansion of f l u  at x and y. [] 

Recall that a function f : U --+ ~ is called Pringsheim regular [54] if at any point x 6 U 
of its domain of definition the Taylor series of  f converges pointwise in a suitably chosen 

neighbourhood of x, not necessarily to f itself. Of  course, every ~-analytic function is 
Pringsheim regular, and in the complex case ~ = C the converse also holds. However, for 

some basic fields ~ ,  including that of  the real numbers, the class of  Pringsheim regular 
functions is strictly wider than that of  C °~ functions (while still narrower than the class of 
C ~ functions): the universally known example of  a Pringsheim regular real function that 
is not real-analytic is given by f ( x )  = e x p ( - 1 / x  2) for x # 0 and f ( 0 )  = 0. From the 
latter example it also follows that the familiar bell functions, typically used for constructing 
partitions of  unity, are Pringsheim regular (though never real-analytic), and this observation 

is important for what follows. 
For any open U ___ ~,(m we will denote by C P (U, E) the graded-commutative algebra of  

all Pringsheim regular functions on U taking values in a locally convex space E. 
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Theorem 3.6. Let A be an AMGO-algebra, let m be a positive integer and U be an open 

subset of K m. For an arbitrary Pringsheim regular function f on U, the Z-expansion Z ( f )  

converges to a unique G e~ function extending f over the DeWitt open set U. 

Proof. This result was established in [8] in the case where A is a BGO algebra. The 

general case is obtained from it by applying Lemma 3.1 and an argument used in the proof 

of  Theorem 3.3. [] 

It is clear that the Z-expansion of  each C ~ function terminates and therefore converges 

in the case where the ground algebra A is finite-dimensional. But in general this is far 

from being the case. This fact was observed in [28], and later it was shown in [42] that the 

Z-expansion of  a C a function f converges over the Rogers'  algebra B,c if and only if f 

is Pringsheim regular, i.e., G a ( U ,  Boo) ~- Ce (U, Ba) .  

It is possible to obtain a description of  those ground algebras A for which the Z-expansion 

converges for all infinitely smooth functions. The following result seems to be new. Say 

that a topological algebra A is weakly pronilpotent if every neighbourhood of zero, U, 

contains a two-sided ideal I such that every element of  the factor algebra A / I  is nilpotent. 

For a locally m-convex topological algebra A this condition is equivalent to the following: 

for every x E A and every continuous multiplicative prenorm p there is a natural n with 

p(x n) ---- 0. In particular, a Banach algebra A is weakly pronilpotent if and only if every 

element of A is nilpotent. 

Theorem 3.7. Let A be an AMGO algebra. The following conditions are equivalent. (i) 

For everym E R], every open U c_ ~m and every C ~  function f :  U --+ A the Z-expansion 

Z ( f )  converges at all points of U; (ii) A has a weakly pronilpotent radical J A. 

Proof. (i) ~ (ii): Assuming that (ii) does not hold, there must exist an even element x ~ Jn 

and a submultiplicative continuous prenorm p on A with p(x n) > 0 for all n. Using the 

Fourier transform in a standard way as e.g. in [40], one can construct a C ~ function f 

whose Taylor coefficients at some point x E U equal cn = n!p(xn) - j ,  n c ~. Clearly, 

Z ( f )  diverges at x. 

(ii) ::~ (i): it is a direct verification. [] 

As a particularly important corollary, the Z-expansion converges for all C a functions 

over the ground algebras A a  and A(OO). 

We conclude this section with the following concept which, though auxiliary in nature, 
is relatively important. A Ga-mapp ing  f : ~r ~ Ap, q is called an Ha-mapping (cf. 

[5,23]) if f ( U )  c_ ~P. It follows from Theorem 3.3 that all H ~ functions are obtained via 

Z-expansion of  those C~-mappings  f : U --+ ~P for which Z ( f )  converges. Theorem 3.6 

tells us that every Pringsheim regular function f : U ~ ~P extends to an H ~ function f : 
~ A p'q . It follows from Theorem 3.7 that if the ground algebra has weakly pronilpotent 

radical, then every Ca -mapp ing  f : U --+ ~P gives rise to an H a function. It is worth 
stressing that over the ground algebra Boo the H a functions are exactly Z-expansions of  
Pringsheim regular mappings f : U ~ ~P. 
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4. R~-supermanifolds 
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Our approach to supermanifolds with coefficients in an arbitrary AMGO algebra, A, is 

free from certain deficiencies inherent in the approaches by Rothstein [48,49] and enables 

one to obtain, for different choices of  A, all the previously known types of  supermanifolds, 

including the Berezin-Leites-Kostant supermanifolds in the case A = ~ and the original 

DeWitt supermanifolds in the case A = Aoo. For a more detailed presentation (though in 

a somewhat more restrictive setting, that of  BGO algebras), cf. [8]. 

Here we will only be considering the real case, ~ = ~. Let A be a real AMGO al- 

gebra. A superspace over A is a triple (X, .4, ev), where X is a paracompact topological 

space, .4 is a sheaf of graded-commutative A-algebras, and ev : .4 ~ Cx a morphism of 

sheaves of  graded A-algebras (where Cx denotes the sheaf of  germs of  A-valued contin- 

uous functions on X). We shall sometimes write ~b for ev(~0). A morphism ofsuperspaces 

(f,  f z )  : (X, .4, ev x) --+ (Y,/3, ev r)  is a pair formed by a continuous map f : X --+ Y and 

a morpbism of sheaves of  graded A-algebras f :  : /3 ~ f , . 4  satisfying ev X o f z  = f ,  oev r ' 

The morphism ev : .4 ~ Cx enables one to evaluate germs of superfunctions - i.e. sec- 

tions of .4 - at a given point p 6 X. We define the graded ideal ~r, of the stalk .4p formed 

by the germs of superfunctions vanishing at p 

~p = {~ E . 4 p l ~ ( p )  = 0}. 

An R~-supermani fo ld  of dimension (m, n), where m, n ~ N, is a superspace (X, .4, ev) 

satisfying the following four axioms. 

Axiom 1. The graded .4-dual of  the sheaf of  derivations, Der*.4, is a locally free graded 

.4-module of  rank (m, n). Every point p 6 X has an open neighbourhood U with sections 
X I . . . . .  X m E .4(U)o, y l  . . . . .  yn (3_ .4 (U)  I such that {dx j . . . . .  dx m, dy I . . . . .  dy n } is a 

graded basis of  Der* .4(U)  over .4(U). 

Axiom 2. Given a coordinate chart (U, X 1 . . . . .  X m ' y l . . . . .  yn), the assignment 

p ~ (21 (p) . . . . .  2m(p) ,  ~ l  ( p )  . . . . .  ~ 2 n ( p ) )  

defines a homeomorphism of U onto an open subset in A m,n. 

Axiom 3. For every p 6 X the ideal ~p is finitely generated. 

The locally convex graded A-algebra topology in the algebras of  sections -4(U), re- 

ferred to in the last remaining axiom, is that of  uniform convergence on compacta with all 
derivatives. Namely, let 79(-4) be the sheaf of  differential operators over -4, i.e., the graded 

-4-module generated multiplicatively by Der A over .4. The topology is given by the family 

of  prenorms 

PL, K (tp) = max p (L  (qg) (p))A, 
pEK 
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with L E D(,AIv), K C U compact, and p runs over the collection of all continuous 

submultiplicative prenorms on A. 

Axiom 4. For every open subset U C X, the topological algebra ,A(U)  is complete 
Hausdorff. 

Example 4.1. The standard, or model, supermanifold,  ( A  re'n, Gin,n), is obtained as follows. 

The underlying topological space of this supermanifold is A m'n. To define the structure sheaf 
~m,n denote by ~ the sheaf of germs of G ~ functions on Am'° ,  and by p : A m'n ~ Am'O 

the coordinate projection. We set 

--I ^oo 
Gm.n = p ~m ®• A(n)" 

The evaluation morphism at a point x = (xl . . . . .  Xm, ~1 . . . . .  ~n) E A m'n is given on ele- 

mentary tensors by evx ( f  ® qb) = f (xl  . . . . .  Xm) " 4~ (~1 . . . . .  ~n), where ~b 6/x  (n) is a poly- 
nomial in n anticommuting variables so the substitution of ~j . . . . .  ~n into ~ makes sense. 

By Axiom 3 one can prove - via a graded version of Nakayama's lemma - the existence 
of local Taylor expansions exactly as in [7,8]. One can further prove that any (m, n) di- 

mensional supermanifold is locally isomorphic to the standard supermanifold ( A  m,n , ~m,n) 

as in [7,8]. This implies that locally superfunctions on an R~-supermanifold admit the 

so-called superf ield expansion, i.e., a superfunction can be represented in every coordinate 

neighbourhood as a finite polynomial in odd local variables with coefficients being G °¢ 

functions depending on even local variables. 
The fact that we are working with Arens-Michael rather than Banach algebras never 

leads to extra complications on any scale. Only considerations of space prevent us from 

reproducing proofs in all the details. Let us just mention that an important technical result 
of an auxiliary nature on the density of polynomials in the rings of superfunctions on A m'n, 

which was proved in [8, Appendix], for BGO algebras A, is extended to AMGO-algebras 
A in a straightforward fashion by means of the technique used in the proof of Theorem 3.3. 

As it was stressed repeatedly in the past [7-9], the concept of an R~-supermanifold 

extends the usual notion of smooth or complex analytic manifold, in which case the ground 
algebra A reduces to the basic field ~. When A = ~(but,,4 is a genuine sheaf of graded alge- 

bras, the notion of Berezin-Leites-Kostant supermanifold (graded manifold) [12,13,33-36] 

is recovered. Finally, in the case of a finite-dimensional Grassmann algebra A = A(n), the 
four axioms lead to the definition of G-supermanifold [4,5]. 

Remark that, exactly as in the case of graded manifolds [34,35], superfunctions on a 
supermanifold X can be identified with supermanifold morphisms X --+ A, where the 
ground algebra A is thought of as the model supermanifold A l, I. Furthermore, the class 

of all R~-supermanifolds over a fixed AMGO algebra, A, together with supermanifold 
morphisms between them can be given the structure of a category (the composition of 
morphisms is not quite straightforward, cf. the case of graded manifolds in [34,35]), but we 
do not pursue this topic any further. 

Let us also describe how the notion of G ~ function of both even and odd variables fits 
within the present setting. Rogers [46] introduced them as mappings f : A m,n ~ A which 
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are polynomial  in the odd variables with coefficients which are G ~ in the sense previously 

discussed. Of course such coefficients are in general not uniquely determined. One should 

notice that whenever one considers an R ~ supermanifold (M, .4, ev), the sheaf of  G ~ 

functions on M coincides with the image of  the morphism ev. A notion of  G °° mapping 

between supermanifolds can be similarly introduced. 

It is important to stress the following well-known phenomenon: in general, a superspace 

morphism f : M --+ N between two R~-supermani fo lds  cannot be restored from the to- 

tality of its values at the points of  M, i.e., f cannot be recovered if we know the underlying 

G ~ - m a p p i n g  e v ( f )  alone. However, this becomes possible if  the ground algebra A has triv- 

ial annihilator in the sense of  Definition 2.2. The following observation is well known and has 

been previously established for various classes of  ground algebras A (cf. e.g. [29,31,47,52]). 

P ropos i t ion  4.2. Let A be an AMGO algebra. The following two conditions are equivalent: 

(i) every superspace morphism f : M ~ N between two arbitrary R°C-supermanifolds 

over A is restored from its values at the points o f  M, i.e., the mapping ev : R ~ ( M ,  N) --~ 

G °c (M, N)  is an injection; (ii) A has trivial annihilator. 

We will also need the following new result. Recall that the basic field ~ ---- ~.  

L e m m a  4.3. Let f be an R ~ superfunction on an R ~ supermanifold X over an AMGO 

algebra A having the property: for  every x E X, ~ A ( f  (x ) ) ~ O. Then f has a multiplicative 

R~-inverse, i.e., there exists an R°C-superfunction g with f g -- 1. 

Proof .  By covering X with open coordinate charts on which the real-valued continuous 

function/3 o e v ( f )  is bounded and uniformly separated from zero and subsequently multi- 

plying f by a constant if  necessary, we can assume without loss of  generality that X = A m" 

is a model  supermanifold and that 0 < E < 1~ o e v ( f ) ( x ) l  < l for each x ~ A m'n and 

some fixed E > 0. The superfunction can be uniquely represented as f = g + ~b, where g 

is a G ~ superfunction in even variables with the property 0 < e < I/~ o ev(g)(x) l  < 1 for 

each x ~ A m'n, while ~b is a nilpotent superfunction of  nilpotency class < 2". Since in the 

following infinite sum each binomial  expansion terminates after the first 2 n terms, one has 

Z ( g + < b ) J = Z g j  +49 j g j - I  + . . .  

j =0 j =0 

and the above series converges to the superfunction 

g = (1 -- g ) - l  + ~b(1 - g ) - 2  + 2~b2(1 _ g ) - 3  + . . .  

+ ( 2  n - 1)!(b 2"-I (1 - g) -2n+l . 
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All the coefficients in the latter polynomial in 49 are G ~ functions in even variables, and 

therefore g is a well-defined supersmooth superfunction on A m'n . It is furthermore clear 

that f g  = 1. Finally, in order to get back from the local models to a global superfunction on 

X, notice that the uniqueness of  the inverse element in an associative unital algebra assures 

the possibility to patch local pieces of  f -  l together. [] 

To conclude this section, we provide an additional characterization of  G °° functions o fm  

even variables; notice that the sheaf ~m ~ of  such functions coincides with the structure sheaf 
of  the standard supermanifold (A re'O, ~m.O). If  we define the sheaf Q on R m as Q = Gm,Ol•m, 

we have the inclusions 79 C Q c CK~ ®K A, where 7 9 is the sheaf of  A-valued Pringsheim 

regular functions on •m, and C ~  is the sheaf of  ~-valued C a functions on K m. The 

following fact is easily derived from Theorem 3.3 (cf. also [8]). 

Proposition 4.4. The sheaf  ~m ~ is the image o f  Q under the Z-expansion. 

5. Cohomology of DeWitt supermanifolds 

An R ~ supermanifold X is called a DeWitt  supermanifold if it admits an atlas whose 

charts are DeWitt open. For example, the model supermanifold is DeWitt. 

Such supermanifolds over A ~  formed historically the first ever class of  supermanifolds 

over a non-trivial ground algebra [22] and since then have been studied rather extensively, 

particularly in the case where the ground algebra A is finite-dimensional [5,1 6-20,23,24,45]. 

In this section we show that the structure sheaf .,4 of  a DeWitt supermanifold M is acyclic, 

i.e. H k (M, ,4) = 0 for k > 0, where H k denotes the kth sheaf cohomology functor. We 

shall follow quite closely [5] (cf. also [3]). 

The following is easily derived from Corollary 3.5 in view of  the fact that each R ~ super- 

function locally is a polynomial in odd variables whose coefficients are G ~ 
functions. 

Proposition 5.1. R ~ superfunctions preserve soul fibres. In full, i f  f : A m'n ~ A p'q is a 

superspace morphism between two model R ~ supermanifolds, then f o r  each x ,  y ~ A m'n 

with flm,n (X) = t~ m'n (y) one has t~ p'q (J~(X)) = flP'q (J~(y)). 

Let M be a DeWitt supermanifold with dim M = (m, n). Say that two points, x and 
y, are equivalent, x "~ y, if there exists a local coordinate chart 49 : V --+ A m'n satisfy- 
ing/3 m'n (49 (x)) = ~m,n (49 (y)). Proposition 5.1, applied to the transition functions of  M, 

implies that ~ is a well-defined equivalence relation on M. Define by MB = M /  ..~ the 

corresponding topological quotient space and by 3rA4 : M --+ MB the projection mapping. 
It is evident that Am'n~ ~ is canonically homeomorphic to the standard m-dimensional 
topological manifold K m and therefore supports a natural structure of  an m-dimensional 

C ~ manifold. Observe also that for each x 6 M, the fibre Jr~t I (x) is entirely contained in 
a suitable coordinate chart on M, because M is DeWitt. (In fact, the projection mapping 
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7g M : M --+ MB determines the DeWitt topology on M in the sense that a subset U c M 

is DeWitt open if and only if U = ZrMIJrM(U) and rrM(U) is open in MB.) This implies 

that MB supports a structure of  a finite-dimensional C ~ manifold. It is called the body 

(manifold) of M. The above construction is well-known (cf. [5]), and we have repeated it 

here only to convince the reader that it still works if an AMGO algebra is chosen as the 

ground algebra of the theory. 

L e m m a  5.2. Every DeWitt R~-supermanifold admits a coarse R ~ partition of uniO: 

Proof.  Let M be a DeWitt R~-supermanifold.  Using the paracompactness of MB and 

standard tools of  uniform topology, one can choose (i) a compatible metric p on MB, and 

(ii) an open cover, y,  of  MB such that the open balls, O1 (V), of  radius 1 around all V 6 y are 

compact, form a locally finite cover of MB, and each cylinder, rCM 1 (Or (V)), is a coordinate 

neighbourhood for M. 

Now choose for each V ~ F a bell function f v  : W" ~ ~ such that supp(fv  o q~v) __. 

O1 (V) and f v o  (Pvlv = 1, where 4~v : V --~ W" denotes the respective coordinate chart. 

(This can be done easily by forming in ~n the convolution product of  the characteristic 

function of  V with a standard m-dimensional bell function, appropriately normalized.) 

Every bell function is Pringsheim regular, and therefore f v  admits a Z-expansion f~  to 

Am'°. The composition, ¢Pv, of  f~  with the corresponding coordinate chart V --+ A ' ' 'n  
and the projection A m'' - +  A m'O is an R ~ superfunction on M having the properties supp 

(qJv) _c O1 (V) and fl (~Ov) I v --= 1. Since the cover by cylinders ZrM 1 (Ol(V))  is locally finite, 

the sum r = Y~w× ~0v is a correctly defined R ~ superfunction on M. Since y is a cover 

of  MB, one concludes that for each x 6 M, /3 ( r (x ) )  > 1. (Indeed, the body of  the image 

of  a point under an R ~ superfunction remains constant along each soul fibre.) According 

to Lemma 4.3, 1 / r  is a correctly defined R °c superfunction on M. Normalizing the ~0v's 

by multiplying by 1 / r  supplies the desired coarse partition of  unity by R ~ superfunctions. 
[] 

Corollary 5.3. The direct image sheaf (zrM),¢4 on MB is acvclic i.e., Hk(MB, (7CM),A) 
=O f o r k  > 0 .  

We also need to know the cohomology of  the standard supermanifold (A m' '  , ~,,,.,, ). 

L e m m a  5.4. The structure sheaf of the standard (m, n)-dimensional supermanifold is 

acyclic, i.e., Hk(A  m'n, ~m,n) = O f o r k  > O. 

Proof. By Proposition 4.4 we have 

~m,n ~" (~m,n)--I f i " ,  where ~- = Q ® A~ n ® A. 

Here f lm ,n  . Am.n ~ ~m is the body map, and Q is a subsheaf of  CRY., which contains the 

sheaf 79 of  Pringsheim regular functions on [~m (cf. discussion at the end of  Section 4). If 
we denote Y = ~?m,n, where ~37 = ~A is the nilpotent ideal in A, and by a " A m'n ~ Y 
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the projection (soul map), for all n > 0 by standard homological algebra we have an exact 
sequence 

0"-~ ~ HJ (~m, ., %--) ~l_ Hk(Y, 7/) --+ Hn(Am'n, cr-l f ' )  

j +k=n 

--+ ~ Tor~_[HJ (R m, .T'), Hk(Y, 7/)] --+ 0. 

j+k=n+l 

As Z over Y is acyclic, and H°(Y, Z) ~_ Z, we obtain from the previous sequence 

k m,t/ H (A , Gm,n) ~" Hk(R m, .~). 

Since the sheaf of rings P is fine (i.e. there exists partitions of unity made up by Pringsheim 
regular functions), the sheaf ~" of 79-modules is soft, hence acyclic. [] 

Proposition 5.5. The structure sheaf A of a DeWitt supermanifold M is acyclic. 

Proof. Any p e MB has a system of neighbourhoods {U} such that for all U, the superman- 

ifold ((~rM)- l (U), .AI(JrM)-~ (U)) is isomorphic to the standard supermanifold (A m,n , ~m,n). 
Then by Lemma 5.4 the sheaf.Al(JrM)-j (u) is acyclic. By Leray's lemma [5,26] we have 

Hk(M, ,.4) ~ Hk(MB, (:rM),.A), k _> O. 

By Lemma 5.3 we conclude. [] 

As in the case of a finite-dimensional ground algebra [2], Proposition 5.5 implies - via 
the so-called abstract de Rham theorem - that the (super) de Rham cohomology of M is 
isomorphic to the Cech cohomology H° (M, B), which is in turn isomorphic to the ordinary 
de Rham cohomology of (the smooth manifold underlying) M tensored by B. Now, M is 
a locally trivial bundle on MB with a vector fibre [5], so that M is contractible to MB, and 
the latter cohomology is isomorphic to the de Rham cohomology of MB. Let 12~t be the 
sheaf of k-superforms on M, and denote by H~DR(M) the cohomology of the differential 
complex (I2~ (M), d), where d is the exterior differential. 

Corollary 5.6. H~DR(M ) ~-- H~R(MB) ® A, k >_ 0. 

6. A correspondence between graded manifolds and DeWitt supermanifolds 

The first aim of this section is to establish the following result, previously known for 
finite-dimensional ground algebras [5]. 

Theorem 6.1, The isomorphism classes of smooth DeWitt supermanifolds over a fixed 
AMGO algebra and those of smooth graded manifolds are in a natural one-to-one corre- 
spondence with each other. 
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Lemma  6.2. Let M be an H A DeWitt supermanifold, with structure sheaf T-[ and body 

projection dp : M ~ MB. Then the pair (MB, ~,7-/) is a graded manifold• 

Proof. An augmentation map -~" ~ , 7 - / ~  C A is defined by setting f (45(p))  = g ( f ( p ) ) ,  
• M B  

where g is the body map. The local triviality of (MB, ~ , ~ )  is ensured by the isomorphism 

(~,7-/)lu _~ CMBIU ® A(n) holding for small enough open sets U C MB. All defining 
properties of graded manifolds are then satisfied. 

Lemma  6.3. Let (X, A) be a graded manifold. One can construct an H A DeWitt super- 

manifold M, with structure sheafT-[ and body projection c19 : M ~ MB, such that X ~- MI3 
and q9,7-( " fit. 

Proof. It is known that every smooth manifold admits an analytic structure [53] (cf. also 
[11]). By realizing the sheaf,A as an exterior bundle ¢4 = /xC  (here ~ = JV'/A/~, where A/" 

is the nilpotent subsheaf of fit; cf. [10]), we may put on (X, fit) an analytic atlas. Then, if 

one considers the transition functions of this atlas, and, after expanding them in powers of 

the odd coordinates, takes the Z-expansions of the coefficients, these will converge. This 
yields H A transition functions for M (for details see [5]). [] 

Proof of Theorem 6.1. In view of the two previous lemmas one has only to establish a 
bijection between the sets of isomorphism classes of H °c and R A DeWitt supermanifolds. 

One easily checks that if (M, 7-[) is an H A DeWitt supermanifold, then (M, 7-/® A) is an 
R A DeWitt supermanifold. Conversely, if (M, fit) is an R A DeWitt supermanifold, then 

(M, fit ®A ~)  (where ~( is a A-module via the body map) is an H A DeWitt supermanifold. 

It is useful to notice that the proofs of Lemma 6.2 and of Theorem 6.1 yield slightly more 

than is contained in the statements of results alone. The following is yet another useful - 

and immediate - by-product of the same argument. 

Proposition 6.4. The correspondence (M, G) ~ (MB, fit) determines a covariantfunctor 

from the category of  R A DeWitt supermanifolds over a fixed AMGO algebra and superspace 

morphisms to the category of  graded manifolds and their morphisms. 

In the remaining part of the section we will demonstrate that, contrary to what was 
claimed in [35], only in special situations can the functor of change of base be applied to 
graded manifolds in order to obtain DeWitt supermanifolds. There are some subtleties in 

this transition that were overlooked by the author of [35]. 
Both the functor of points and the functor of change of base come from algebraic geometry 

and theory of analytic spaces d la Grothendieck [21]. Here we present them in the form they 
assumed in supergeometry [ 14,35]. The need for the functor of points approach is explained 
by the fact that superfunctions - and therefore morphisms between superspaces - are not 

uniquely determined by the collection of  their values. (A similar phenomenon occurs in 
algebraic geometry for the nilpotents of the structure sheaves of non-reduced schemes.) 
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Let A be an arbitrary AMGO algebra. Denote by SpecA a locally ringed superspace 

(i.e., a superspace over ~ as the ground algebra) whose underlying topological space is a 

singleton and the structure sheaf is constant, with A as the algebra of  global sections. In 

particular, SpecA(q) = ~0,q is a purely odd model supermanifold of  dimension (0, q), also 

sometimes denoted by ptq. 

Let now X be an arbitrary locally ringed superspace. Any superspace morphism SpecA --+ 

X is called a A-point of X. This terminology is justified by the fact that pt0-points are in 

a natural one-to-one correspondence with the points of  the underlying topological space of 

X. (Because the structure sheaf is one of  local graded algebras, every stalk admits a unique 

unital algebra homomorphism to the basic field, and therefore a morphism ptq --~ X is 

uniquely determined by the underlying mapping {.} ~ X.) Denote the collection of all 

A-points of  X by ptA(X) .  The correspondence A ~-~ p tA (X)  from the category of  all 

local graded-commutative algebras to the category of  all sets and mappings, Sets ,  deter- 

mines a contravariant functor. Also, if a ground algebra A is fixed, then the correspondence 

X ~ ptA (X)  is functorial as well: every superspace morphism f : X ~ Y gives rise to 

a set-theoretic mapping p t A ( f )  : p t z ( X )  --+ p tA(Y)  via the formula p t A ( f ) ( K )  = f o X 
for each tc : Spec A --+ X. 

Let us try to compute A-points of  some superspaces. We begin with the simplest nontrivial 

graded manifold, that of  dimension (0, 1). It is easy to see that A-points of  K °' l are in a 

one-to-one correspondence with elements of  A °' l: indeed, each A-point is essentially a 

graded algebra homomorphism A(1) ~ A and as such is uniquely determined by the 

image of  a fixed odd generator ~ 6 A(1) in Al .  This argument leads to the following 
result. 

L e m m a  6.5. Homorphisms from A (n ) to a graded-commutative algebra A - and therefore 

A-points o f  the superspace ptq - are in a natural one-to-one correspondence with elements 
o f  A O.n. 

Next we show that even computing the set of  A-points for the purely even smooth 

manifold RI.0 = ~ turns out to be a subtler task than it might seem at first. 

L e m m a  6.6. Let On denote the algebra o f  germs o f  infinitely smooth real functions on 

R n at the origin. Let A be a local graded-commutative algebra with the property that 

every element o f  the radical is nilpotent. Homomorphisms from (On to A are in a natural 

one-to-one correspondence with elements o f  Jv '0. 

Proof. Denote by xi, i = 1 . . . . .  n the germs of  coordinate functions at 0. Let oti, i = 

1 . . . . .  n be a collection of  elements of  JA. Denote by N a natural number with the property 
a N = 0 for each i = 1 . . . . .  n. If  PN(Xl . . . . .  xn) is the Taylor polynomial of degree N 

for f at zero, set ha~ ..... an ( f )  = PN(Otl . . . . .  an) ~ A. Clearly, hal ..... a, is a graded unital 
algebra homomorphism. On the other hand, if h : On --+ A is an arbitrary graded unital 

algebra homomorphism, set ot i ~-- h ( x i )  for each i = 1 . . . . .  n. It is not difficult to see that 
h = hal ..... ~ ,  which finishes the proof. [] 
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The following is an immediate corollary of  Lemmas 6.5 and 6.6. 
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Proposition 6.7. Let A be an AMGO algebra having weakly pronilpotent radical. Let m, n 

be natural numbers. The A-points o f R  m'n are in a natural one-to-one correspondence with 

the elements o f  the linear superspace A n''''. Symbolically, pt  A ~m,n _~ Am,,,. 

In particular, the above result holds for finite-dimensional Grassmann algebras, as well 

as for DeWitt's algebra Am and for the algebra A ( ~ ) .  Surprisingly, this ceases to be tree in 

the absence of weak pronilpotency of  the radical, even for such a 'nice'  algebra as Rogers'  

Banach-Grassmann algebra B~.  

Example  6.8. The B~-points of the graded manifold El,0 are in a natural one-to-one 

correspondence with those elements of the model supermanifold B~0 having nilpotent 

soul. In particular, the set pts~  (R m' ')  does not support a natural structure of a DeWitt 

B ~  , as it was claimed by Leites in [35] - in fact, m ,, is proper superdomain m,,, pts.~ (R ' ) a 

B ~  . everywhere dense subset of  m., 

To prove this, first observe that B ~  admits a canonical continuous graded algebra 

monomorphism into DeWitt algebra Am, which we will denote by i. It gives rise to a dual 

morphism of superspaces, ? : Spec Am ~ Spec B~ ,  which is, from category-theoretic 

viewpoint, an epimorphism. By composing a B~-point  of  a superspace X with L one obtains 

a A~-point ,  and the emerging mapping p t B ~ X  ~ p t A ~ X  is into. 

Let x ~ (B~c)0 be such that a (x )  is nilpotent. In such a case, the Z-expansion converges 

at the point x for every infinitely smooth real function defined in the vicinity of  fl (x), and 

the value of  Z ( f )  at x gives us the desired morphism from the stalk at fl(x) to A: 

(f)t~Crl ~ ( Z ( f ) ) ( x ) .  

This allows us to assign to x ~ (B~)o  the morphism Spec Boc -+ N0, I of the form 

* ~-+ fl(x),  ( f)~Ixl ~ ( Z ( f ) ) ( x ) .  
Now let # = (* ~ y, q)) be any superspace morphism, where ¢p : Cy ~ (B~c)o is an 

algebra morphism. According to the proof of  Proposition 6.7, a homomorphism i o ~o from 

C~(r) to A~c is uniquely determined by its value on the germ of the local coordinate function 

z ~ z - y, and one must have in fact (i o g 0 ( f )  = ( Z ( f ) ) ( x ) ,  where the Z-expansion is 

taken in A~c. Consequently, the same must hold in B~c. But as we have seen before, for a 

non-nilpotent x the value Z ( f )  is undefined in B,c: what happens is that the series Z ( f )  

converges in the larger algebra Aec, and the value of  the sum belongs to B~c. for every f if 

and only if cr (x) is nilpotent. 
Now we get back to Arens-Michael algebras having weakly pronilpotent radical. Let 

m ~ N. If f : ~(m.n) ~ ~(p.q) is a superspace morphism, then the induced mapping 

p t A ( f )  : p t A ( ~  (re'n)) ~ A m'n ~ A p'q ~ p t A ( ~  (p'q)) 

is a G ° mapping, i.e., a morphism of Rogers G ~-superspaces over A. The mapping ptA ( f )  

in itself need not determine a superspace morphism; this is only the case if in addition 
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A ± = {0}, cf. Proposition 4.2. However, one can easily get round this obstacle. Indeed, 
the projective tensor product 69 = A ~ r  A ( ~ )  forms an AMGO algebra (Proposition 
2.3), satisfying the desired property A ± = {0} and in addition having weakly pronilpotent 
radical if A had this property. Consequently, the G~-mapping ptc , ) ( f ) :O)  m'n ~ tO p'q 

determines in a unique way a morphism between R~-supermanifolds (over 69). Now it 
is easy to verify the following. Recall that A is contained in 69 as a topological graded 

subalgebra in a canonical way: A 9 x ~ x ® 1M E A ® M C 69. 

Proposition 6.9. Let A be an AMGO algebra having weakly pronilpotent radical. Super- 

functions on a DeWitt open subset U c_ AP,q are in a natural one-to-one correspondence 

with those G ~ functions f on the corresponding DeWitt open subset (J = fl~l (U) taking 

values in tO for which f (U) c A. 

Proof. If f is a G ~ superfunction, then the Z-expansion of f l u ,  taken in O) p'q, is a G ° 
superfunction on U, obviously having the property Zc.9(f)(U) c A. If f is a purely odd 

coordinate superfunction of the form (xl . . . . .  Xm, ~1 . . . .  , ~n) ~ ~j, then its extension 

to 69 is the corresponding coordinate function, and the desired property is obvious. Since 

each superfunction on U is a polynomial in odd variables with G ~ superfunctions as 
coefficients, the extension rule is now uniquely determined by the property of being a 

A-algebra homomorphism. Its injectivity is practically evident. Concerning surjectivity, 

it suffices to check it for G ~ superfunctions f over 69 only, but the restrictions of such 
superfunctions with the property f ( U )  c A to U are genuine G ~ superfunctions over A. 
This completes the proof. [] 

It follows that pto ( f )  determines a A-superspace morphism, which we shall denote by 
the same symbol p t A ( f )  : A m'' ~ A p'q. To compute the pullback of a superfunction 

g on a DeWitt open subset U c A p,q under ptA ( f ) ,  we first extend g to a O-valued 

superfunction, g', on U, and then take as ptA(f )~(g)  the peffunction on p t A ( f )  -I (U) 

corresponding to the G ~ superfunction g' o pte~ ( f )  on ptA ( f ) - l ( U ) .  

Applying the above observation to the transition superfunctions of an atlas of a graded 
manifold, one can show that for every smooth Berezin-Leites-Kostant supermanifold X, 

the set ptA (X) supports a natural structure of an R ~-supermanifold over A. Moreover, this 
supermanifold is DeWitt. Furthermore, one can easily prove that the construction of the 

previous section is actually functorial at least when A is restricted to the class of AMGO 
algebras with weakly pronilpotent radical. 

Theorem 6.10. Let A be an AMGO algebra having weakly pronilpotent radical. The 

correspondence pt A ( f  ) is a functor from the category of  Berezin-Lertes-Kostant smooth 

supermanifolds (graded manifolds) to the category of  R ~ DeWitt supermanifolds over 
A. 

Remark  6.11. For general AMGO algebras we can only claim that this correspondence is 
functorial in the real analytic case. 
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The functor ptA (--) is called a change of base functor. The above facts were known in 

folklore, cf. [14,35], but at the intuitive level only, it seems. Such a link between various 

approaches to supermanifolds was first pointed out by Leites [35] and (independently) 

Schwarz [51], and it remains largely unexplored to date. In a somewhat different form, this 
construction was also known to DeWitt [23]. 

It is still important to remember, however, that there are, in general, many more morphisms 

between two DeWitt supermanifolds than between the two corresponding graded manifolds, 
i.e., not every morphism between DeWitt supermanifolds ptA (X) and ptA (Y) is of the form 

ptA ( f )  for a suitably chosen morphism f : X --+ Y. In fact, this phenomenon can be already 
observed for the model supermanifolds in dimension (1, 0) or (0, 1). 

Finally, let us note that supermanifolds over a fixed AMGO algebra form a category with 
direct products, cf. [6]. 

7. Super Lie groups and deformations 

A supergroup of finite dimension is a group object in the category of supermanifolds, 

i.e., a quadruple (G, #, v, e), where/~ : G x G ~ G is a morphism of supermanifolds 
(the multiplication morphism), v : G ~ G is another morphism (the inversion morphism), 

as is e : pto ~ G (the unity morphism); those morphisms satisfy the usual group object 

axioms of associativity, existence of unity and existence of inverses, expressed by means of 
commutative diagrams (cf. [14]). To every supergroup one can associate in a natural way 

its Lie superalgebra, formed by all left-invariant vector superfields on G. (Left-invariance 

can no longer be expressed through left translations alone, and requires an elaborate trick 

in order to be defined, cf. [13,14,31].) 

A direct application of the functor of change of base to G leads, modulo Theorem 6.10, 

to the following result. 

Theorem 7.1. Let A be an Arens-Michael algebra of Grassmann origin having pronilpo- 

tent radical. For every graded group G, the DeWitt supermanifold pt A (G) supports the 

natural structure of a DeWitt supergroup over A. The correspondence G w-~ ptA(G) is a 

covariant functor from the category of graded groups and their morphisms to the categor 3, 

of DeWitt supergroups over A and supergroup morphisms. 

DeWitt [23,24] calls those supergroups contained in the image of the functor ptA(--) 

conventional. Not all supergroups are conventional; for examples we refer the reader to 

DeWitt's book [23] and the paper [24]. 
On the other hand, if G is a supergroup over an AMGO algebra, A, then the application 

of Proposition 6.4 immediately leads to the existence of a graded group structure on the 
body Lie group, GB. Using the terminology of [25], we can state this result as follows. 

Theorem 7.2. Let A be an AMGO algebra. Each DeWitt supergroup over A is a defor- 

mation of a suitable graded group over Spec A. 
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To understand the meaning of  the word 'deformation '  in the present context, notice that, 

as an •-superspace, every DeWitt  supergroup G is the direct product of its body graded 

manifold GB and the superspace Spec A. If  one denotes by nrl : G ~ GB × Spec A ~ GB 

the first coordinate projection, and by # and/ZB the multiplication morphisms on G and 

GB, respectively, then one has ~rl o # o (~rl x nrl ) =/ZB.  In other words, the multiplication 

morphism on G preserves the fibres of  the superfibre bundle GB x Spec A --~ GI3, and in this 

sense it is a deformation of  the natural multiplication on the direct product of  supergroups 

GB and Spec A. (The latter object, though not a supergroup in a strict sense, is a group 

object in the category of  superspaces with respect to a natural abelian supergroup structure.) 

The validity of  Theorem 7.2 was conjectured by the second named author (VP) in [44]. 

An interesting open question is: can every graded group be deformed into an 'uncon- 

ventional '  DeWitt  supergroup? In other words, given a graded group G, does there exist a 

DeWitt  supergroup, G, over the ground algebra Am,  such that the body graded group, GB, 

is isomorphic to G, and yet  G is unconventional, i.e., G ~ p r A y ( G ) ?  
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